
ChiliProject - Feature # 665: Provide a way to query issues qith Liquid

Status: Open Priority: Normal
Author: Holger Just Category: Text formatting
Created: 2011-10-17 Assignee: Holger Just
Updated: 2012-07-11 Due date:
Remote issue URL:
Affected version:
Description: Once we have full liquid support (see #604) it is desirable to have access to about all objects from within the

language with issues being the most important object type here.

I started working on an extension which utilizes a simple "treetop":http://treetop.rubyforge.org/ grammar to
parse a DSL for filter specification and to subsequently create the issues and make them available to the
user.

The syntax currently looks like this:

<pre>{%raw%}
{% query my_query %}
status o
author_id = 1
{% endquery %}

|_. ID |_. Subject |_. Status |
{% for issue in my_query.issues %}
| {{issue.id}} | {{issue.subject}} | {{issue.status.name}} |
{% endfor %}

You have {{my_query.count}} open issues.
{%endraw%}</pre>

This generates the following example output:

_. ID	_. Subject	_. Status
1	This is an issue	New
2	A second issue	New

You have 2 open issues.

What is missing yet is full support for all attributes and more user-friendly input as it currently relies on the
filter representation inside the query class which sometimes is not obvious.

Also missing are facilities for sorting and a performant way of slicing (i.e. without first instantiating all previous
issues).

History
2011-10-17 05:48 pm - Holger Just
You can find the current code at https://github.com/meineerde/chiliproject/tree/issues%2Funstable%2F665-liquid-issue-queries

2020-10-25 1/3

It builds on top of the current @issues/unstable/604-liquid@ branch which contains the code for #604.

2012-07-11 02:31 pm - Holger Just
- Description changed from Once we have full liquid support (see #604) it is desirable to have access to about all objects from within the language with
issues being the most important object type here.

I started working on an extension which utilizes a simple "treetop":http://treetop.rubyforge.org/ grammar to parse a DSL for filter specification and to
subsequently create the issues and make them available to the user.

The syntax currently looks like this:

<pre>
{% query my_query %}
status o
author_id = 1
{% endquery %}

|_. ID |_. Subject |_. Status |
{% for issue in my_query.issues %}
| {{issue.id}} | {{issue.subject}} | {{issue.status.name}} |
{% endfor %}

You have {{my_query.count}} open issues.
</pre>

This generates the following example output:

_. ID	_. Subject	_. Status
1	This is an issue	New
2	A second issue	New

You have 2 open issues.

What is missing yet is full support for all attributes and more user-friendly input as it currently relies on the filter representation inside the query class
which sometimes is not obvious.

Also missing are facilities for sorting and a performant way of slicing (i.e. without first instantiating all previous issues). to Once we have full liquid
support (see #604) it is desirable to have access to about all objects from within the language with issues being the most important object type here.

I started working on an extension which utilizes a simple "treetop":http://treetop.rubyforge.org/ grammar to parse a DSL for filter specification and to
subsequently create the issues and make them available to the user.

The syntax currently looks like this:

<pre>{%raw%}
{% query my_query %}
status o
author_id = 1
{% endquery %}

2020-10-25 2/3

|_. ID |_. Subject |_. Status |
{% for issue in my_query.issues %}
| {{issue.id}} | {{issue.subject}} | {{issue.status.name}} |
{% endfor %}

You have {{my_query.count}} open issues.
{%endraw%}</pre>

This generates the following example output:

_. ID	_. Subject	_. Status
1	This is an issue	New
2	A second issue	New

You have 2 open issues.

What is missing yet is full support for all attributes and more user-friendly input as it currently relies on the filter representation inside the query class
which sometimes is not obvious.

Also missing are facilities for sorting and a performant way of slicing (i.e. without first instantiating all previous issues).

2020-10-25 3/3

